

ytmusicapi: Unofficial API for YouTube Music

The purpose of this library is to automate interactions with YouTube Music [https://music.youtube.com/],
such as retrieving your library content, managing playlists and uploading songs.
To achieve this, it emulates web requests that would occur if you performed the same actions in your web browser.

This project is not supported nor endorsed by Google

Features

Browsing:

	search (including all filters)

	get artist information and releases (songs, videos, albums, singles)

	get user information (videos, playlists)

	get albums

	get song metadata

	get watch playlists (playlist that appears when you press play in YouTube Music)

	get song lyrics

Library management:

	get library contents: playlists, songs, artists, albums and subscriptions

	add/remove library content: rate songs, albums and playlists, subscribe/unsubscribe artists

Playlists:

	create and delete playlists

	modify playlists: edit metadata, add/move/remove tracks

	get playlist contents

Uploads:

	Upload songs and remove them again

	List uploaded songs, artists and albums

Usage

from ytmusicapi import YTMusic

ytmusic = YTMusic('headers_auth.json')
playlistId = ytmusic.create_playlist('test', 'test description')
search_results = ytmusic.search('Oasis Wonderwall')
ytmusic.add_playlist_items(playlistId, [search_results[0]['videoId']])

The tests [https://github.com/sigma67/ytmusicapi/blob/master/tests/test.py] are also a great source of usage examples.

To get started, read the setup instructions.

For a complete documentation of available functions, see the Reference.

Contents

	Setup
	Installation

	Authenticated requests
	Copy authentication headers

	Using the headers in your project

	Manual file creation

	Usage
	Unauthenticated

	Authenticated
	Brand accounts

	Reference
	Setup

	Search

	Browsing

	Watch

	Library

	Playlists

	Uploads

	FAQ
	Setup
	My library results are empty even though I set up my cookie correctly.

	Usage
	How do I add a song, album, artist or playlist to my library?

	How can I get the radio playlist for a song, video, playlist or album?

	How can I get the shuffle playlist for a playlist or album?

	How can I get all my public playlists in a single request?

	Can I download songs?

	YouTube Music API Internals
	Is there a difference between songs and videos?

	Is there a rate limit?

	What is a browseId?

Setup

Installation

pip install ytmusicapi

Authenticated requests

Copy authentication headers

To run authenticated requests you need to set up you need to copy your request headers from a POST request in your browser.
To do so, follow these steps:

	Open a new tab

	Open the developer tools (Ctrl-Shift-I) and select the “Network” tab

	Go to https://music.youtube.com and ensure you are logged in

	Find an authenticated POST request. The simplest way is to filter by /browse using the search bar

 Usage

Usage

Unauthenticated

Unauthenticated requests for retrieving playlist content or searching:

from ytmusicapi import YTMusic

ytmusic = YTMusic()

If an endpoint requires authentication you will receive an error:
Please provide authentication before using this function

Authenticated

For authenticated requests you need to set up your credentials first: Setup

After you have created the authentication JSON, you can instantiate the class:

from ytmusicapi import YTMusic
ytmusic = YTMusic('headers_auth.json')

With the ytmusic instance you can now perform authenticated requests:

playlistId = ytmusic.create_playlist("test", "test description")
search_results = ytmusic.search("Oasis Wonderwall")
ytmusic.add_playlist_items(playlistId, [search_results[0]['videoId']])

Brand accounts

To send requests as a brand account, there is no need to change authentication credentials.
Simply provide the ID of the brand account when instantiating YTMusic.
You can get the ID from https://myaccount.google.com/ after selecting your brand account
(https://myaccount.google.com/b/21_digit_number).

Example:

from ytmusicapi import YTMusic
ytmusic = YTMusic('headers_auth.json', "101234161234936123473")

 Reference

Reference

Reference for the YTMusic class.

	
class ytmusicapi.YTMusic(auth: str = None, user: str = None, requests_session=True, proxies: dict = None, language: str = 'en')

	Allows automated interactions with YouTube Music by emulating the YouTube web client’s requests.
Permits both authenticated and non-authenticated requests.
Authentication header data must be provided on initialization.

	
YTMusic.__init__(auth: str = None, user: str = None, requests_session=True, proxies: dict = None, language: str = 'en')

	Create a new instance to interact with YouTube Music.

	Parameters

	
	auth – Optional. Provide a string or path to file.
Authentication credentials are needed to manage your library.
Should be an adjusted version of headers_auth.json.example in the project root.
See setup() for how to fill in the correct credentials.
Default: A default header is used without authentication.

	user – Optional. Specify a user ID string to use in requests.
This is needed if you want to send requests on behalf of a brand account.
Otherwise the default account is used. You can retrieve the user ID
by going to https://myaccount.google.com/brandaccounts and selecting your brand account.
The user ID will be in the URL: https://myaccount.google.com/b/user_id/

	requests_session – A Requests session object or a truthy value to create one.
A falsy value disables sessions.
It is generally a good idea to keep sessions enabled for
performance reasons (connection pooling).

	proxies – Optional. Proxy configuration in requests [https://requests.readthedocs.io/] format [https://requests.readthedocs.io/en/master/user/advanced/#proxies].

	language – Optional. Can be used to change the language of returned data.
English will be used by default. Available languages can be checked in
the ytmusicapi/locales directory.

Setup

See also the Setup page

	
classmethod YTMusic.setup(filepath: str = None, headers_raw: str = None) → Dict[KT, VT]

	Requests browser headers from the user via command line
and returns a string that can be passed to YTMusic()

	Parameters

	
	filepath – Optional filepath to store headers to.

	headers_raw – Optional request headers copied from browser.
Otherwise requested from terminal

	Returns

	configuration headers string

Search

	
YTMusic.search(query: str, filter: str = None, limit: int = 20, ignore_spelling: bool = False) → List[Dict[KT, VT]]

	Search YouTube music
Returns results within the provided category.

	Parameters

	
	query – Query string, i.e. ‘Oasis Wonderwall’

	filter – Filter for item types. Allowed values: songs, videos, albums, artists, playlists, uploads.
Default: Default search, including all types of items.

	limit – Number of search results to return
Default: 20

	ignore_spelling – Whether to ignore YTM spelling suggestions.
If True, the exact search term will be searched for, and will not be corrected.
This does not have any effect when the filter is set to uploads.
Default: False, will use YTM’s default behavior of autocorrecting the search.

	Returns

	List of results depending on filter.
resultType specifies the type of item (important for default search).
albums, artists and playlists additionally contain a browseId, corresponding to
albumId, channelId and playlistId (browseId=``VL``+playlistId)

Example list for default search with one result per resultType for brevity. Normally
there are 3 results per resultType and an additional thumbnails key:

[
 {
 "resultType": "video",
 "videoId": "vU05Eksc_iM",
 "title": "Wonderwall",
 "artists": [
 {
 "name": "Oasis",
 "id": "UCmMUZbaYdNH0bEd1PAlAqsA"
 }
],
 "views": "1.4M",
 "duration": "4:38"
 },
 {
 "resultType": "song",
 "videoId": "ZrOKjDZOtkA",
 "title": "Wonderwall",
 "artists": [
 {
 "name": "Oasis",
 "id": "UCmMUZbaYdNH0bEd1PAlAqsA"
 }
],
 "album": {
 "name": "(What's The Story) Morning Glory? (Remastered)",
 "id": "MPREb_9nqEki4ZDpp"
 },
 "duration": "4:19",
 "isExplicit": false,
 "feedbackTokens": {
 "add": null,
 "remove": null
 }
 },
 {
 "resultType": "album",
 "browseId": "MPREb_9nqEki4ZDpp",
 "title": "(What's The Story) Morning Glory? (Remastered)",
 "type": "Album",
 "artist": "Oasis",
 "year": "1995",
 "isExplicit": false
 },
 {
 "resultType": "playlist",
 "browseId": "VLPLK1PkWQlWtnNfovRdGWpKffO1Wdi2kvDx",
 "title": "Wonderwall - Oasis",
 "author": "Tate Henderson",
 "itemCount": "174"
 },
 {
 "resultType": "video",
 "videoId": "bx1Bh8ZvH84",
 "title": "Wonderwall",
 "artists": [
 {
 "name": "Oasis",
 "id": "UCmMUZbaYdNH0bEd1PAlAqsA"
 }
],
 "views": "386M",
 "duration": "4:38"
 },
 {
 "resultType": "artist",
 "browseId": "UCmMUZbaYdNH0bEd1PAlAqsA",
 "artist": "Oasis",
 "shuffleId": "RDAOkjHYJjL1a3xspEyVkhHAsg",
 "radioId": "RDEMkjHYJjL1a3xspEyVkhHAsg"
 }
]

Browsing

	
YTMusic.get_artist(channelId: str) → Dict[KT, VT]

	Get information about an artist and their top releases (songs,
albums, singles and videos). The top lists contain pointers
for getting the full list of releases. For songs/videos, pass
the browseId to get_playlist(). For albums/singles,
pass browseId and params to get_artist_albums().

	Parameters

	channelId – channel id of the artist

	Returns

	Dictionary with requested information.

Example:

{
 "description": "Oasis were ...",
 "views": "1838795605",
 "name": "Oasis",
 "channelId": "UCUDVBtnOQi4c7E8jebpjc9Q",
 "subscribers": "2.3M",
 "subscribed": false,
 "thumbnails": [...],
 "songs": {
 "browseId": "VLPLMpM3Z0118S42R1npOhcjoakLIv1aqnS1",
 "results": [
 {
 "videoId": "ZrOKjDZOtkA",
 "title": "Wonderwall (Remastered)",
 "thumbnails": [...],
 "artist": "Oasis",
 "album": "(What's The Story) Morning Glory? (Remastered)"
 }
]
 },
 "albums": {
 "results": [
 {
 "title": "Familiar To Millions",
 "thumbnails": [...],
 "year": "2018",
 "browseId": "MPREb_AYetWMZunqA"
 }
],
 "browseId": "UCmMUZbaYdNH0bEd1PAlAqsA",
 "params": "6gPTAUNwc0JDbndLYlFBQV..."
 },
 "singles": {
 "results": [
 {
 "title": "Stand By Me (Mustique Demo)",
 "thumbnails": [...],
 "year": "2016",
 "browseId": "MPREb_7MPKLhibN5G"
 }
],
 "browseId": "UCmMUZbaYdNH0bEd1PAlAqsA",
 "params": "6gPTAUNwc0JDbndLYlFBQV..."
 },
 "videos": {
 "results": [
 {
 "title": "Wonderwall",
 "thumbnails": [...],
 "views": "358M",
 "videoId": "bx1Bh8ZvH84",
 "playlistId": "PLMpM3Z0118S5xuNckw1HUcj1D021AnMEB"
 }
],
 "browseId": "VLPLMpM3Z0118S5xuNckw1HUcj1D021AnMEB"
 }
}

	
YTMusic.get_artist_albums(channelId: str, params: str) → List[Dict[KT, VT]]

	Get the full list of an artist’s albums or singles

	Parameters

	
	channelId – channel Id of the artist

	params – params obtained by get_artist()

	Returns

	List of albums in the format of get_library_albums(),
except artists key is missing.

	
YTMusic.get_user(channelId: str) → Dict[KT, VT]

	Retrieve a user’s page. A user may own videos or playlists.

	Parameters

	channelId – channelId of the user

	Returns

	Dictionary with information about a user.

Example:

{
 "name": "4Tune – No Copyright Music",
 "videos": {
 "browseId": "UC44hbeRoCZVVMVg5z0FfIww",
 "results": [
 {
 "title": "Epic Music Soundtracks 2019",
 "videoId": "bJonJjgS2mM",
 "playlistId": "RDAMVMbJonJjgS2mM",
 "thumbnails": [
 {
 "url": "https://i.ytimg.com/vi/bJon...",
 "width": 800,
 "height": 450
 }
],
 "views": "19K"
 }
]
 },
 "playlists": {
 "browseId": "UC44hbeRoCZVVMVg5z0FfIww",
 "results": [
 {
 "title": "♚ Machinimasound | Playlist",
 "playlistId": "PLRm766YvPiO9ZqkBuEzSTt6Bk4eWIr3gB",
 "thumbnails": [
 {
 "url": "https://i.ytimg.com/vi/...",
 "width": 400,
 "height": 225
 }
]
 }
],
 "params": "6gO3AUNvWU..."
 }
}

	
YTMusic.get_user_playlists(channelId: str, params: str) → List[Dict[KT, VT]]

	Retrieve a list of playlists for a given user.
Call this function again with the returned params to get the full list.

	Parameters

	
	channelId – channelId of the user.

	params – params obtained by get_artist()

	Returns

	List of user playlists in the format of get_library_playlists()

	
YTMusic.get_album(browseId: str) → Dict[KT, VT]

	Get information and tracks of an album

	Parameters

	browseId – browseId of the album, for example
returned by search()

	Returns

	Dictionary with title, description, artist and tracks.

Each track is in the following format:

{
 "title": "Seven",
 "trackCount": "7",
 "durationMs": "1439579",
 "playlistId": "OLAK5uy_kGnhwT08mQMGw8fArBowdtlew3DpgUt9c",
 "releaseDate": {
 "year": 2016,
 "month": 10,
 "day": 28
 },
 "description": "Seven is ...",
 "thumbnails": [...],
 "artist": [
 {
 "name": "Martin Garrix",
 "id": "UCqJnSdHjKtfsrHi9aI-9d3g"
 }
],
 "tracks": [
 {
 "index": "1",
 "title": "WIEE (feat. Mesto)",
 "artists": "Martin Garrix",
 "videoId": "8xMNeXI9wxI",
 "lengthMs": "203406",
 "likeStatus": "INDIFFERENT"
 }
]
}

	
YTMusic.get_song(videoId: str) → Dict[KT, VT]

	Returns metadata about a song or video.

	Parameters

	videoId – Video id

	Returns

	Dictionary with song metadata.

Example:

{
 "videoId": "ZrOKjDZOtkA",
 "title": "Wonderwall (Remastered)",
 "lengthSeconds": "259",
 "keywords": [
 "Oasis",
 "(What's",
 "..."
],
 "channelId": "UCmMUZbaYdNH0bEd1PAlAqsA",
 "isOwnerViewing": false,
 "shortDescription": "Provided to YouTube by Ignition...",
 "isCrawlable": true,
 "thumbnail": {
 "thumbnails": [
 {
 "url": "https://i.ytimg.com/vi/ZrOKjDZOtkA/maxresdefault.jpg",
 "width": 1920,
 "height": 1080
 }
]
 },
 "averageRating": 4.5673099,
 "allowRatings": true,
 "viewCount": "18136380",
 "author": "Oasis - Topic",
 "isPrivate": false,
 "isUnpluggedCorpus": false,
 "isLiveContent": false,
 "provider": "Ignition",
 "artists": [
 "Oasis"
],
 "copyright": "℗ 2014 Big Brother Recordings ...",
 "production": [
 "Composer: Noel Gallagher",
 "Lyricist: Noel Gallagher",
 "Producer: Owen Morris & Noel Gallagher"
],
 "release": "2014-09-29"
 "category": "Music"
}

	
YTMusic.get_streaming_data(videoId: str) → Dict[KT, VT]

	Returns the streaming data for a song or video.

	Parameters

	videoId – Video id

	Returns

	Dictionary with song streaming data.

Example:

{
 "expiresInSeconds": "21540",
 "formats": [
 {
 "itag": 18,
 "mimeType": "video/mp4; codecs="avc1.42001E, mp4a.40.2"",
 "bitrate": 306477,
 "width": 360,
 "height": 360,
 "lastModified": "1574970034520502",
 "contentLength": "9913027",
 "quality": "medium",
 "fps": 25,
 "qualityLabel": "360p",
 "projectionType": "RECTANGULAR",
 "averageBitrate": 306419,
 "audioQuality": "AUDIO_QUALITY_LOW",
 "approxDurationMs": "258809",
 "audioSampleRate": "44100",
 "audioChannels": 2,
 "signatureCipher": "s=..."
 }
],
 "adaptiveFormats": [
 {
 "itag": 137,
 "mimeType": "video/mp4; codecs="avc1.640020"",
 "bitrate": 312234,
 "width": 1078,
 "height": 1080,
 "initRange": {
 "start": "0",
 "end": "738"
 },
 "indexRange": {
 "start": "739",
 "end": "1382"
 },
 "lastModified": "1574970033536914",
 "contentLength": "5674377",
 "quality": "hd1080",
 "fps": 25,
 "qualityLabel": "1080p",
 "projectionType": "RECTANGULAR",
 "averageBitrate": 175432,
 "approxDurationMs": "258760",
 "signatureCipher": "s=..."
 },
 {...},
 {
 "itag": 140,
 "mimeType": "audio/mp4; codecs="mp4a.40.2"",
 "bitrate": 131205,
 "initRange": {
 "start": "0",
 "end": "667"
 },
 "indexRange": {
 "start": "668",
 "end": "1011"
 },
 "lastModified": "1574969975805792",
 "contentLength": "4189579",
 "quality": "tiny",
 "projectionType": "RECTANGULAR",
 "averageBitrate": 129521,
 "highReplication": true,
 "audioQuality": "AUDIO_QUALITY_MEDIUM",
 "approxDurationMs": "258773",
 "audioSampleRate": "44100",
 "audioChannels": 2,
 "loudnessDb": 1.1422243,
 "signatureCipher": "s=..."
 },
 {...}
]
}

	
YTMusic.get_lyrics(browseId: str) → Dict[KT, VT]

	Returns lyrics of a song or video.

	Parameters

	browseId – Lyrics browse id obtained from get_watch_playlist

	Returns

	Dictionary with song lyrics.

Example:

{
 "lyrics": "Today is gonna be the day\nThat they're gonna throw it back to you\n",
 "source": "Source: LyricFind"
}

Watch

	
YTMusic.get_watch_playlist(videoId: str = None, playlistId: str = None, limit=25, params: str = None) → Dict[List[Dict[KT, VT]], str]

	Get a watch list of tracks. This watch playlist appears when you press
play on a track in YouTube Music.

Please note that the INDIFFERENT likeStatus of tracks returned by this
endpoint may be either INDIFFERENT or DISLIKE, due to ambiguous data
returned by YouTube Music.

	Parameters

	
	videoId – videoId of the played video

	playlistId – playlistId of the played playlist or album

	limit – minimum number of watch playlist items to return

	params – only used internally by get_watch_playlist_shuffle()

	Returns

	List of watch playlist items.

Example:

{
 "tracks": [
 {
 "title": "Interstellar (Main Theme) - Piano Version",
 "byline": "Patrik Pietschmann • 47M views",
 "length": "4:47",
 "videoId": "4y33h81phKU",
 "playlistId": "RDAMVM4y33h81phKU",
 "thumbnail": [
 {
 "url": "https://i.ytimg.com/vi/4y...",
 "width": 400,
 "height": 225
 }
],
 "feedbackTokens": [],
 "likeStatus": "LIKE"
 },...
],
 "lyrics": "MPLYt_HNNclO0Ddoc-17"
}

	
YTMusic.get_watch_playlist_shuffle(playlistId: str = None, limit=50) → Dict[List[Dict[KT, VT]], str]

	Shuffle any playlist

	Parameters

	
	playlistId – Playlist id

	limit – The number of watch playlist items to return

	Returns

	A list of watch playlist items (see get_watch_playlist())

Library

	
YTMusic.get_library_playlists(limit: int = 25) → List[Dict[KT, VT]]

	Retrieves the playlists in the user’s library.

	Parameters

	limit – Number of playlists to retrieve

	Returns

	List of owned playlists.

Each item is in the following format:

{
 'playlistId': 'PLQwVIlKxHM6rz0fDJVv_0UlXGEWf-bFys',
 'title': 'Playlist title',
 'thumbnails: [...],
 'count': 5
}

	
YTMusic.get_library_songs(limit: int = 25, validate_responses: bool = False, order: str = None) → List[Dict[KT, VT]]

	Gets the songs in the user’s library (liked videos are not included).
To get liked songs and videos, use get_liked_songs()

	Parameters

	
	limit – Number of songs to retrieve

	validate_responses – Flag indicating if responses from YTM should be validated and retried in case
when some songs are missing. Default: False

	order – Order of songs to return. Allowed values: ‘a_to_z’, ‘z_to_a’, ‘recently_added’. Default: Default order.

	Returns

	List of songs. Same format as get_playlist()

	
YTMusic.get_library_artists(limit: int = 25, order: str = None) → List[Dict[KT, VT]]

	Gets the artists of the songs in the user’s library.

	Parameters

	
	limit – Number of artists to return

	order – Order of artists to return. Allowed values: ‘a_to_z’, ‘z_to_a’, ‘recently_added’. Default: Default order.

	Returns

	List of artists.

Each item is in the following format:

{
 "browseId": "UCxEqaQWosMHaTih-tgzDqug",
 "artist": "WildVibes",
 "subscribers": "2.91K",
 "thumbnails": [...]
}

	
YTMusic.get_library_albums(limit: int = 25, order: str = None) → List[Dict[KT, VT]]

	Gets the albums in the user’s library.

	Parameters

	
	limit – Number of albums to return

	order – Order of albums to return. Allowed values: ‘a_to_z’, ‘z_to_a’, ‘recently_added’. Default: Default order.

	Returns

	List of albums.

Each item is in the following format:

{
 "browseId": "MPREb_G8AiyN7RvFg",
 "title": "Beautiful",
 "type": "Album",
 "thumbnails": [...],
 "artists": {
 "name": "Project 46",
 "id": "UCXFv36m62USAN5rnVct9B4g"
 },
 "year": "2015"
}

	
YTMusic.get_liked_songs(limit: int = 100) → Dict[KT, VT]

	Gets playlist items for the ‘Liked Songs’ playlist

	Parameters

	limit – How many items to return. Default: 100

	Returns

	List of playlistItem dictionaries. See get_playlist()

	
YTMusic.get_history() → List[Dict[KT, VT]]

	Gets your play history in reverse chronological order

	Returns

	List of playlistItems, see get_playlist()
The additional property played indicates when the playlistItem was played
The additional property feedbackToken can be used to remove items with remove_history_items()

	
YTMusic.remove_history_items(feedbackTokens: List[str]) → Dict[KT, VT]

	Remove an item from the account’s history. This method does currently not work with brand accounts

	Parameters

	feedbackTokens – Token to identify the item to remove, obtained from get_history()

	Returns

	Full response

	
YTMusic.rate_song(videoId: str, rating: str = 'INDIFFERENT') → Dict[KT, VT]

	Rates a song (“thumbs up”/”thumbs down” interactions on YouTube Music)

	Parameters

	
	videoId – Video id

	rating – One of ‘LIKE’, ‘DISLIKE’, ‘INDIFFERENT’

’INDIFFERENT’ removes the previous rating and assigns no rating

	Returns

	Full response

	
YTMusic.edit_song_library_status(feedbackTokens: List[str] = None) → Dict[KT, VT]

	Adds or removes a song from your library depending on the token provided.

	Parameters

	feedbackTokens – List of feedbackTokens obtained from authenticated requests
to endpoints that return songs (i.e. get_album())

	Returns

	Full response

	
YTMusic.rate_playlist(playlistId: str, rating: str = 'INDIFFERENT') → Dict[KT, VT]

	Rates a playlist/album (“Add to library”/”Remove from library” interactions on YouTube Music)
You can also dislike a playlist/album, which has an effect on your recommendations

	Parameters

	
	playlistId – Playlist id

	rating – One of ‘LIKE’, ‘DISLIKE’, ‘INDIFFERENT’

’INDIFFERENT’ removes the playlist/album from the library

	Returns

	Full response

	
YTMusic.subscribe_artists(channelIds: List[str]) → Dict[KT, VT]

	Subscribe to artists. Adds the artists to your library

	Parameters

	channelIds – Artist channel ids

	Returns

	Full response

	
YTMusic.unsubscribe_artists(channelIds: List[str]) → Dict[KT, VT]

	Unsubscribe from artists. Removes the artists from your library

	Parameters

	channelIds – Artist channel ids

	Returns

	Full response

Playlists

	
YTMusic.get_playlist(playlistId: str, limit: int = 100) → Dict[KT, VT]

	Returns a list of playlist items

	Parameters

	
	playlistId – Playlist id

	limit – How many songs to return. Default: 100

	Returns

	Dictionary with information about the playlist.
The key tracks contains a List of playlistItem dictionaries

Each item is in the following format:

{
 "id": "PLQwVIlKxHM6qv-o99iX9R85og7IzF9YS_",
 "privacy": "PUBLIC",
 "title": "New EDM This Week 03/13/2020",
 "thumbnails": [...]
 "description": "Weekly r/EDM new release roundup. Created with github.com/sigma67/spotifyplaylist_to_gmusic",
 "author": "sigmatics",
 "year": "2020",
 "duration": "6+ hours",
 "trackCount": 237,
 "tracks": [
 {
 "videoId": "bjGppZKiuFE",
 "title": "Lost",
 "artists": [
 {
 "name": "Guest Who",
 "id": "UCkgCRdnnqWnUeIH7EIc3dBg"
 },
 {
 "name": "Kate Wild",
 "id": "UCwR2l3JfJbvB6aq0RnnJfWg"
 }
],
 "album": {
 "name": "Lost",
 "id": "MPREb_PxmzvDuqOnC"
 },
 "duration": "2:58",
 "likeStatus": "INDIFFERENT",
 "thumbnails": [...],
 "isAvailable": True,
 "isExplicit": False,
 "feedbackTokens": {
 "add": "AB9zfpJxtvrU...",
 "remove": "AB9zfpKTyZ..."
 }
]
}

The setVideoId is the unique id of this playlist item and
needed for moving/removing playlist items

	
YTMusic.create_playlist(title: str, description: str, privacy_status: str = 'PRIVATE', video_ids: List[T] = None, source_playlist: str = None) → Union[str, Dict[KT, VT]]

	Creates a new empty playlist and returns its id.

	Parameters

	
	title – Playlist title

	description – Playlist description

	privacy_status – Playlists can be ‘PUBLIC’, ‘PRIVATE’, or ‘UNLISTED’. Default: ‘PRIVATE’

	video_ids – IDs of songs to create the playlist with

	source_playlist – Another playlist whose songs should be added to the new playlist

	Returns

	ID of the YouTube playlist or full response if there was an error

	
YTMusic.edit_playlist(playlistId: str, title: str = None, description: str = None, privacyStatus: str = None, moveItem: Tuple[str, str] = None, addPlaylistId: str = None) → Union[str, Dict[KT, VT]]

	Edit title, description or privacyStatus of a playlist.
You may also move an item within a playlist or append another playlist to this playlist.

	Parameters

	
	playlistId – Playlist id

	title – Optional. New title for the playlist

	description – Optional. New description for the playlist

	privacyStatus – Optional. New privacy status for the playlist

	moveItem – Optional. Move one item before another. Items are specified by setVideoId, see get_playlist()

	addPlaylistId – Optional. Id of another playlist to add to this playlist

	Returns

	Status String or full response

	
YTMusic.delete_playlist(playlistId: str) → Union[str, Dict[KT, VT]]

	Delete a playlist.

	Parameters

	playlistId – Playlist id

	Returns

	Status String or full response

	
YTMusic.add_playlist_items(playlistId: str, videoIds: List[str], source_playlist: str = None, duplicates: bool = False) → Union[str, Dict[KT, VT]]

	Add songs to an existing playlist

	Parameters

	
	playlistId – Playlist id

	videoIds – List of Video ids

	source_playlist – Playlist id of a playlist to add to the current playlist (no duplicate check)

	duplicates – If True, duplicates will be added. If False, an error will be returned if there are duplicates (no items are added to the playlist)

	Returns

	Status String or full response

	
YTMusic.remove_playlist_items(playlistId: str, videos: List[Dict[KT, VT]]) → Union[str, Dict[KT, VT]]

	Remove songs from an existing playlist

	Parameters

	
	playlistId – Playlist id

	videos – List of PlaylistItems, see get_playlist().
Must contain videoId and setVideoId

	Returns

	Status String or full response

Uploads

	
YTMusic.get_library_upload_songs(limit: int = 25, order: str = None) → List[Dict[KT, VT]]

	Returns a list of uploaded songs

	Parameters

	
	limit – How many songs to return. Default: 25

	order – Order of songs to return. Allowed values: ‘a_to_z’, ‘z_to_a’, ‘recently_added’. Default: Default order.

	Returns

	List of uploaded songs.

Each item is in the following format:

{
 "entityId": "t_po_CICr2crg7OWpchDpjPjrBA",
 "videoId": "Uise6RPKoek",
 "artist": "Coldplay",
 "title": "A Sky Full Of Stars",
 "album": "Ghost Stories",
 "likeStatus": "LIKE",
 "thumbnails": [...]
}

	
YTMusic.get_library_upload_artists(limit: int = 25, order: str = None) → List[Dict[KT, VT]]

	Gets the artists of uploaded songs in the user’s library.

	Parameters

	
	limit – Number of artists to return. Default: 25

	order – Order of artists to return. Allowed values: ‘a_to_z’, ‘z_to_a’, ‘recently_added’. Default: Default order.

	Returns

	List of artists as returned by get_library_artists()

	
YTMusic.get_library_upload_albums(limit: int = 25, order: str = None) → List[Dict[KT, VT]]

	Gets the albums of uploaded songs in the user’s library.

	Parameters

	
	limit – Number of albums to return. Default: 25

	order – Order of albums to return. Allowed values: ‘a_to_z’, ‘z_to_a’, ‘recently_added’. Default: Default order.

	Returns

	List of albums as returned by get_library_albums()

	
YTMusic.get_library_upload_artist(browseId: str, limit: int = 25) → List[Dict[KT, VT]]

	Returns a list of uploaded tracks for the artist.

	Parameters

	
	browseId – Browse id of the upload artist, i.e. from get_library_upload_songs()

	limit – Number of songs to return (increments of 25).

	Returns

	List of uploaded songs.

Example List:

[
 {
 "entityId": "t_po_CICr2crg7OWpchDKwoakAQ",
 "videoId": "Dtffhy8WJgw",
 "title": "Hold Me (Original Mix)",
 "artist": [
 {
 "name": "Jakko",
 "id": "FEmusic_library_privately_owned_artist_detaila_po_CICr2crg7OWpchIFamFra28"
 }
],
 "album": null,
 "likeStatus": "LIKE",
 "thumbnails": [...]
 }
]

	
YTMusic.get_library_upload_album(browseId: str) → Dict[KT, VT]

	Get information and tracks of an album associated with uploaded tracks

	Parameters

	browseId – Browse id of the upload album, i.e. from i.e. from get_library_upload_songs()

	Returns

	Dictionary with title, description, artist and tracks.

Example album:

{
 "title": "Hard To Stop - Single",
 "thumbnails": [...]
 "year": "2013",
 "trackCount": 1,
 "duration": "4 minutes, 2 seconds",
 "tracks": [
 {
 "entityId": "t_po_CICr2crg7OWpchDN6tnYBw",
 "videoId": "VBQVcjJM7ak",
 "title": "Hard To Stop (Vicetone x Ne-Yo x Daft Punk)",
 "likeStatus": "LIKE"
 }
]
}

	
YTMusic.upload_song(filepath: str) → Union[str, requests.models.Response]

	Uploads a song to YouTube Music

	Parameters

	filepath – Path to the music file (mp3, m4a, wma, flac or ogg)

	Returns

	Status String or full response

	
YTMusic.delete_upload_entity(entityId: str) → Union[str, Dict[KT, VT]]

	Deletes a previously uploaded song or album

	Parameters

	entityId – The entity id of the uploaded song or album,
e.g. retrieved from get_library_upload_songs()

	Returns

	Status String or error

 FAQ

FAQ

Frequently asked questions for ytmusicapi. Contributions are welcome, please
submit a PR [https://github.com/sigma67/ytmusicapi/pulls].

Setup
